Tag: global illumination

  • Vulkan Pipelines, Barrier, memory management

    Hi!
    Once again, I am going to present you some vulkan features, like pipelines, barriers, memory management, and all things useful for prior ones. This article will be long, but it will be separating into several chapters.

    Memory Management

    In Vulkan application, it is up to the developer to manage himself the memory. The number of allocations is limited. Make one allocation for one buffer, or one image is really a bad design in Vulkan. One good design is to make a big allocation (let’s call that a chunk), and manage it yourself, and allocate buffer or image within the chunk.

    A Chunk Allocator

    We need a simple object which has responsibility for allocations of chunks. It just has to select the good heap and call allocate and free from Vulkan API.

    #pragma once
    
    #include "System/Vulkan/Hardware/device.hpp"
    #include <tuple>
    
    class ChunkAllocator
    {
    public:
        ChunkAllocator(Device &device);
    
        // Memory, flags, size, ptr
        std::tuple<VkDeviceMemory, VkMemoryPropertyFlags, VkDeviceSize, char *>
        allocate(VkMemoryPropertyFlags flags, VkDeviceSize size);
    
        ~ChunkAllocator();
    
    private:
        Device &mDevice;
    
        std::vector<VkDeviceMemory> mDeviceMemories; //!< Each chunk
    };
    #include "chunkallocator.hpp"
    #include "System/exception.hpp"
    
    ChunkAllocator::ChunkAllocator(Device &device) : mDevice(device)
    {
    
    }
    
    std::tuple<VkDeviceMemory, VkMemoryPropertyFlags, VkDeviceSize, char*>
    ChunkAllocator::allocate(VkMemoryPropertyFlags flags, VkDeviceSize size) {
        VkPhysicalDeviceMemoryProperties const &property = mDevice.memoryProperties();
        int index = -1;
    
        // Looking for a heap with good flags and good size
        for(auto i(0u); i < property.memoryTypeCount; ++i)
            if((property.memoryTypes[i].propertyFlags & flags) == flags)
                if(size < property.memoryHeaps[property.memoryTypes[i].heapIndex].size)
                    index = i;
    
        if(index == -1)
            throw std::runtime_error("No good heap found");
    
        VkMemoryAllocateInfo info = {};
        info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
        info.pNext = nullptr;
        info.allocationSize = size;
        info.memoryTypeIndex = index;
    
        // Perform the allocation
        VkDeviceMemory mem;
        vulkanCheckError(vkAllocateMemory(mDevice, &info, nullptr, &mem));
        mDeviceMemories.push_back(mem);
    
        char *ptr;
         // We map the memory if it is host visible
        if(flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
            vulkanCheckError(vkMapMemory(mDevice, mem, 0, VK_WHOLE_SIZE, 0, (void**)&ptr));
    
    
        return std::tuple<VkDeviceMemory, VkMemoryPropertyFlags, VkDeviceSize, char*>
                (mem, flags, size, ptr);
    }
    
    ChunkAllocator::~ChunkAllocator() {
        // We free all memory objects
        for(auto &mem : mDeviceMemories)
            vkFreeMemory(mDevice, mem, nullptr);
    }
    

    This piece of code is quite simple and easy to read.

    Memory Pool

    Memory pools are structures used to optimize dynamic allocation performances. In video games, it is not an option to use a memory pool. Ideas are the same I told in the first part. Allocate a chunk, and sub allocate yourself within the chunk. I made a simple generic memory pool.
    There is a little scheme which explains what I wanted to do.

    Memory Pool
    Memory Pool

    As you can see, video memory is separated into several parts (4 here) and each “Block” in the linked list describes one sub-allocation.
    One block is described by :

    1. Size of the block
    2. Offset of the block relatively with the DeviceMemory
    3. A pointer to set data from the host (map)
    4. Boolean to know about the freeness of the block

    A sub-allocation within a chunk is performed as follows :

    1. Traverse the linked list until we find a well-sized free block
    2. Modify the size and set the boolean to false
    3. Create a new block, set size, offset and put boolean to true and insert it after the current one.

    A free is quite simple, you just have to put the boolean to true.
    A good other method could be a “shrink to fit”. If there are some following others with the boolean set to true, we merge all blocks into one.

    #pragma once
    
    #include "chunkallocator.hpp"
    
    // Memory, Offset, Size, ptr
    using Allocation = std::tuple<VkDeviceMemory, VkDeviceSize, VkDeviceSize, char*>;
    
    class MemoryPool {
        // Describes one user allocation
        struct Block {
            VkDeviceSize offset;
            VkDeviceSize size;
            char *ptr;
            bool isFree;
        };
    
        struct Chunk {
            VkDeviceMemory memory;
            VkMemoryPropertyFlags flags;
            VkDeviceSize size;
            char *ptr;
            std::vector<Block> blocks;
        };
    
    public:
        MemoryPool(Device &device);
    
        Allocation allocate(VkDeviceSize size, VkMemoryPropertyFlags flags);
    
        void free(Allocation const &alloc);
    
    private:
        Device &mDevice;
        ChunkAllocator mChunkAllocator;
        std::vector<Chunk> mChunks;
    
        void addChunk(std::tuple<VkDeviceMemory, VkMemoryPropertyFlags,
                      VkDeviceSize, char*> const &ptr);
    };
    #include "memorypool.hpp"
    #include <cassert>
    
    MemoryPool::MemoryPool(Device &device) :
        mDevice(device), mChunkAllocator(device) {}
    
    Allocation MemoryPool::allocate(VkDeviceSize size, VkMemoryPropertyFlags flags) {
        if(size % 128 != 0)
            size = size + (128 - (size % 128)); // 128 bytes alignment
        assert(size % 128 == 0);
    
        for(auto &chunk: mChunks) {
            // if flags are okay
            if((chunk.flags & flags) == flags) {
                int indexBlock = -1;
                // We are looking for a good block
                for(auto i(0u); i < chunk.blocks.size(); ++i) {
                    if(chunk.blocks[i].isFree) {
                        if(chunk.blocks[i].size > size) {
                            indexBlock = i;
                            break;
                        }
                    }
                }
    
                // If a block is find
                if(indexBlock != -1) {
                    Block newBlock;
                    // Set the new block
                    newBlock.isFree = true;
                    newBlock.offset = chunk.blocks[indexBlock].offset + size;
                    newBlock.size = chunk.blocks[indexBlock].size - size;
                    newBlock.ptr = chunk.blocks[indexBlock].ptr + size;
    
                    // Modify the current block
                    chunk.blocks[indexBlock].isFree = false;
                    chunk.blocks[indexBlock].size = size;
    
                    // If allocation does not fit perfectly the block
                    if(newBlock.size != 0)
                        chunk.blocks.emplace(chunk.blocks.begin() + indexBlock + 1, newBlock);
    
                    return Allocation(chunk.memory, chunk.blocks[indexBlock].offset, size, chunk.blocks[indexBlock].ptr);
                }
            }
        }
    
        // if we reach there, we have to allocate a new chunk
        addChunk(mChunkAllocator.allocate(flags, 1 << 25));
    
        return allocate(size, flags);
    }
    
    void MemoryPool::free(Allocation const &alloc) {
        for(auto &chunk: mChunks)
            if(chunk.memory == std::get<0>(alloc)) // Search the good memory device
                for(auto &block : chunk.blocks)
                    if(block.offset == std::get<1>(alloc)) // Search the good offset
                        block.isFree = true; // put it to free
    }
    
    void MemoryPool::addChunk(const std::tuple<VkDeviceMemory, VkMemoryPropertyFlags, VkDeviceSize, char *> &ptr) {
        Chunk chunk;
        Block block;
    
        // Add a block mapped along the whole chunk
        block.isFree = true;
        block.offset = 0;
        block.size = std::get<2>(ptr);
        block.ptr = std::get<3>(ptr);
    
        chunk.flags = std::get<1>(ptr);
        chunk.memory = std::get<0>(ptr);
        chunk.size = std::get<2>(ptr);
        chunk.ptr = std::get<3>(ptr);
        chunk.blocks.emplace_back(block);
        mChunks.emplace_back(chunk);
    }

    Buffers

    Buffers are a well-known part in OpenGL. In Vulkan, it is approximately the same, but you have to manage yourself the memory through one memory pool.

    When you create one buffer, you have to give him a size, an usage (uniform buffer, index buffer, vertex buffer, …). You also could ask for a sparse buffer (Sparse resources will be a subject of an article one day ^_^). You also could tell him to be in a mode concurrent. Thanks to that, you could access the same buffer through two different queues.

    #pragma once
    
    #include "memorypool.hpp"
    
    class Buffer
    {
    public:
        Buffer(Device &device, MemoryPool &memoryPool,
               VkBufferUsageFlags usage, VkDeviceSize size,
               VkSharingMode sharing = VK_SHARING_MODE_EXCLUSIVE,
               uint32_t nFamilyIndex = 0, uint32_t *pQueueFamilyIndices = nullptr);
    
        Buffer(Buffer &&buf);
    
        template<typename T>
        T *map() {
            return (T*)std::get<3>(mAllocation);
        }
    
        VkDeviceSize size();
    
        operator VkBuffer();
    
        ~Buffer();
    
    private:
        Device &mDevice;
        MemoryPool &mMemoryPool;
        Allocation mAllocation;
        VkBuffer mBuffer;
    };
    Buffer::Buffer(Device &device, MemoryPool &memoryPool,
                   VkBufferUsageFlags usage, VkDeviceSize size, VkSharingMode sharing,
                   uint32_t nFamilyIndex, uint32_t *pQueueFamilyIndices) :
        mDevice(device), mMemoryPool(memoryPool) {
        VkBufferCreateInfo info = {};
    
        info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
        info.pNext = nullptr;
        info.flags = 0;
        info.size = size;
        info.usage = usage;
        info.sharingMode = sharing;
        info.queueFamilyIndexCount = nFamilyIndex;
        info.pQueueFamilyIndices = pQueueFamilyIndices;
    
        vulkanCheckError(vkCreateBuffer(mDevice, &info, nullptr, &mBuffer));
    
        mAllocation = memoryPool.allocate(size, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
        vulkanCheckError(vkBindBufferMemory(mDevice, mBuffer, std::get<0>(mAllocation), std::get<1>(mAllocation)));
    }
    
    Buffer::~Buffer() {
        if(mBuffer != VK_NULL_HANDLE)
            mMemoryPool.free(mAllocation);
        vkDestroyBuffer(mDevice, mBuffer, nullptr);
    }

    I chose to have a host visible and host coherent memory. But it is not especially useful. Indeed, to achieve a better performance, you could want to use a non coherent memory (but you will have to flush/invalidate your memory!!).
    For the host visible memory, it is not especially useful as well, indeed, for indirect rendering, it could be smart to perform culling with the GPU to fill all structures!

    Shaders

    Shaders are Different parts of your pipelines. It is an approximation obviously. But, for each part (vertex processing, geometry processing, fragment processing…), shader associated is invoked. In Vulkan, shaders are wrote with SPIR-V.
    SPIR-V is “.class” are for Java. You may compile your GLSL sources to SPIR-V using glslangvalidator.

    Why is SPIR-V so powerful ?

    SPIR-V allows developers to provide their application without the shader’s source.
    SPIR-V is an intermediate representation. Thanks to that, vendor implementation does not have to write a specific language compiler. It results in a lower complexity for the driver and it could more optimize, and compile it faster.

    Shaders in Vulkan

    Contrary to OpenGL’s shader, it is really easy to compile in Vulkan.
    My implementation keeps in memory all shaders into a hashtable. It lets to prevent any shader’s recompilation.

    #pragma once
    
    #include "System/Vulkan/Hardware/device.hpp"
    #include <unordered_map>
    #include <string>
    
    class Shaders
    {
    public:
        Shaders(Device &device);
    
        VkShaderModule get(std::string const &path);
    
        ~Shaders();
    private:
        Device &mDevice;
        std::unordered_map<std::string, VkShaderModule> mShaders;
    };
    
    #include "shaders.hpp"
    #include "System/exception.hpp"
    #include <fstream>
    
    auto readBinaryFile(std::string const &path) {
        std::ifstream is(path, std::ios::binary);
    
        if(!is.is_open())
            throw std::runtime_error("Shader : " + path + " does not found");
    
        is.seekg(0, std::ios::end);
        auto l = is.tellg();
        is.seekg(0, std::ios::beg);
    
        std::vector<char> values(l);
        is.read(&values[0], l);
    
        return values;
    }
    
    Shaders::Shaders(Device &device) :
        mDevice(device)
    {
    
    }
    
    VkShaderModule Shaders::get(const std::string &path) {
        if(mShaders.find(path) == mShaders.end()) {
            auto file = readBinaryFile(path);
            VkShaderModuleCreateInfo info;
            VkShaderModule module;
    
            info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
            info.pNext = nullptr;
            info.flags = 0;
            info.codeSize = file.size();
            info.pCode = (uint32_t*)&file[0];
    
            vulkanCheckError(vkCreateShaderModule(mDevice, &info, nullptr, &module));
            mShaders[path] = module;
        }
    
        return mShaders[path];
    }
    
    Shaders::~Shaders() {
        for(auto &shader: mShaders)
            vkDestroyShaderModule(mDevice, shader.second, nullptr);
    }

    Pipelines

    Pipelines are objects used for dispatch (compute pipelines) or render something (graphic pipelines).

    The beginning of this part is going to be a summarize of the Vulkan’s specs.

    Descriptors

    Shaders access buffer and image resources through special variables. These variables are organized into a set of bindings. One set is described by one descriptor.

    Descriptor Set Layout

    They describe one set. One set is compound with an array of bindings. Each bindings are described by :

    1. A binding number
    2. One type : Image, uniform buffer, SSBO, …
    3. The number of values (Could be an array of textures)
    4. Stage where shader could access the binding.

    Allocation of Descriptor Sets

    They are allocated from descriptor pool objects.
    One descriptor pool object is described by a number of set allocation possible, and an array of descriptor type / count it can allocate.

    Once you have the descriptor pool, you could allocate from it sets (using both descriptor pool and descriptor set layout).
    When you destroy the pool, sets also are destroyed.

    Give buffer / image to sets

    Now, we have descriptors, but we have to tell Vulkan where shaders can get data from.

    Pipeline Layouts

    Pipeline layouts are a kind of bridge between the pipeline and descriptor sets. They let you manage push constant as well (we’ll see them in a future article).

    Implementation

    Since descriptor sets are not coupled with pipelines layout. We could separate pipeline layout and descriptor pool / sets, but currently, I prefer to keep them coupled. It is a choice, and it will maybe change in the future.

    #pragma once
    #include "System/Vulkan/Hardware/device.hpp"
    
    class PipelineLayout : Loggable, NonCopyable
    {
    public:
        PipelineLayout(Device &device);
    
        void setDescriptorSetLayouts(std::vector<VkDescriptorSetLayoutCreateInfo> &&infos);
        void setDescriptorPoolCreateInfo(VkDescriptorPoolCreateInfo const &info);
        void create();
    
        std::vector<VkDescriptorSet> const &descriptorSets() const;
    
        operator VkPipelineLayout();
    
        ~PipelineLayout();
    
    private:
        Device &mDevice;
    
        std::vector<VkDescriptorSetLayoutCreateInfo> mSetLayoutCreateInfos;
        std::vector<VkDescriptorSetLayout> mDescriptorSetLayouts;
        std::vector<VkDescriptorSet> mDescriptorSets;
        VkDescriptorPoolCreateInfo mDescriptorPoolCreateInfo;
        VkDescriptorPool mDescriptorPool = VK_NULL_HANDLE;
    
        VkPipelineLayout mLayout = VK_NULL_HANDLE;
    };
    void PipelineLayout::create() {
        VkPipelineLayoutCreateInfo info = {};
    
        // Create all set layouts
        for(auto &info : mSetLayoutCreateInfos) {
            VkDescriptorSetLayout layout;
            vulkanCheckError(vkCreateDescriptorSetLayout(mDevice, &info, nullptr, &layout));
            mDescriptorSetLayouts.emplace_back(layout);
        }
    
        // Create the descriptor pool
        if(mSetLayoutCreateInfos.size() > 0)
            vulkanCheckError(vkCreateDescriptorPool(mDevice, &mDescriptorPoolCreateInfo, nullptr, &mDescriptorPool));
    
        info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
        info.pNext = nullptr;
        info.flags = 0;
        info.setLayoutCount = mDescriptorSetLayouts.size();
        info.pushConstantRangeCount = 0;
    
        if(mDescriptorSetLayouts.size() > 0)
            info.pSetLayouts = &mDescriptorSetLayouts[0];
    
        // Create the pipeline layout
        vulkanCheckError(vkCreatePipelineLayout(mDevice, &info, nullptr, &mLayout));
    
        if(mDescriptorSetLayouts.size()) {
            VkDescriptorSetAllocateInfo alloc = {};
    
            alloc.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
            alloc.pNext = nullptr;
            alloc.descriptorPool = mDescriptorPool;
            alloc.descriptorSetCount = mDescriptorSetLayouts.size();
            alloc.pSetLayouts = &mDescriptorSetLayouts[0];
            mDescriptorSets.resize(mDescriptorSetLayouts.size());
            vulkanCheckError(vkAllocateDescriptorSets(mDevice, &alloc, &mDescriptorSets[0]));
        }
    }
    
    std::vector<VkDescriptorSet> const &PipelineLayout::descriptorSets() const {
        return mDescriptorSets;
    }
    
    PipelineLayout::~PipelineLayout() {
        for(auto &layout : mDescriptorSetLayouts)
            vkDestroyDescriptorSetLayout(mDevice, layout, nullptr);
    
        vkDestroyDescriptorPool(mDevice, mDescriptorPool, nullptr);
        vkDestroyPipelineLayout(mDevice, mLayout, nullptr);
    }

    The idea is quite easy. You create all your descriptor set layouts, then you allocate them through a pool.

    Graphics Pipelines in a nutshell

    Graphics Pipelines describe exactly what will happened on the rendering part.
    They describe

    1. Shader stages
    2. Which kind of data you want to deal with (Position, normal,…)
    3. Which kind of primitive you want to draw (triangle, lines, points)
    4. Which operator you want to use for Stencil and Depth
    5. Multi sampling, color blending,…

    The creation of a Graphic Pipeline is really easy, the main difficulty is the configuration.

    void Pipeline::create() {
        VkGraphicsPipelineCreateInfo info = {};
    
        info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
        info.pNext = nullptr;
        info.flags = mFlags;
    
        info.stageCount = mStages.size();
        info.pStages = &mStages[0];
        info.pVertexInputState = &mVertexInputState;
        info.pInputAssemblyState = &mInputAssemblyState;
        info.pTessellationState = mTesselationState.get();
        info.pViewportState = mViewportState.get();
        info.pRasterizationState = &mRasterizationState;
        info.pMultisampleState = mMultisampleState.get();
        info.pDepthStencilState = mDepthStencilState.get();
        info.pColorBlendState = mColorBlendState.get();
        info.pDynamicState = mDynamicState.get();
    
        if(mLayout != nullptr)
            info.layout = *mLayout;
    
        info.renderPass = mRenderPass;
        info.subpass = mSubpass;
    
        vulkanCheckError(vkCreateGraphicsPipelines(mDevice, VK_NULL_HANDLE, 1, &info, nullptr, &mPipeline));
    }

    I used a kind of builder design pattern to configure pipelines.

    For the example, I configure my pipeline as follows :

    1. 2 stages : vertex shader and fragment shader
    2. Position 4D (x, y, z, w)
    3. No depth / stencil test
    4. An uniform buffer for one color

    This code is a bit long, but it gives all the steps you have to follow to create simple pipelines.

    std::unique_ptr<Pipeline> GBufferPipelineBuilder::build(Context &context,
                                                            RenderPass &renderpass, uint32_t subpass) {
        VkRect2D scissor;
        scissor.offset.x = scissor.offset.y = 0;
        scissor.extent.height = context.surfaceWindow().height();
        scissor.extent.width = context.surfaceWindow().width();
    
        VkViewport vp;
        vp.height = context.surfaceWindow().height();
        vp.width = context.surfaceWindow().width();
        vp.minDepth = 0.0f;
        vp.maxDepth = 1.0f;
        vp.x = vp.y = 0;
    
        VkPipelineViewportStateCreateInfo viewPort;
        viewPort.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
        viewPort.flags = 0;
        viewPort.pNext = nullptr;
        viewPort.scissorCount = viewPort.viewportCount = 1;
        viewPort.pViewports = &vp;
        viewPort.pScissors = &scissor;
    
        // 2 stages, vertex and fragment
        std::vector<VkPipelineShaderStageCreateInfo> stages(2);
        for(auto &stage : stages) {
            stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
            stage.pNext = nullptr;
            stage.flags = 0;
            stage.pSpecializationInfo = nullptr;
        }
    
        stages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
        stages[0].module = context.shader("../Shader/vert.spv");
        stages[0].pName = "main";
    
        stages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
        stages[1].module = context.shader("../Shader/frag.spv");
        stages[1].pName = "main";
    
        // Values are float4
        VkVertexInputAttributeDescription attribute[1];
        attribute[0].location = 0;
        attribute[0].binding = 0;
        attribute[0].offset = 0;
        attribute[0].format = VK_FORMAT_R32G32B32A32_SFLOAT;
    
        VkVertexInputBindingDescription binding[1];
        binding[0].binding = 0;
        binding[0].stride = 4 * sizeof(float);
        binding[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
    
        VkPipelineVertexInputStateCreateInfo vertexInput = {};
        vertexInput.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
        vertexInput.pNext = nullptr;
        vertexInput.flags = 0;
        vertexInput.vertexAttributeDescriptionCount = 1;
        vertexInput.vertexBindingDescriptionCount = 1;
        vertexInput.pVertexAttributeDescriptions = attribute;
        vertexInput.pVertexBindingDescriptions = binding;
    
        // No really MSAA
        VkPipelineMultisampleStateCreateInfo multisample = {};
        multisample.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
        multisample.pNext = nullptr;
        multisample.flags = 0;
        multisample.pSampleMask = nullptr;
        multisample.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
        multisample.sampleShadingEnable = VK_FALSE;
        multisample.alphaToCoverageEnable = VK_FALSE;
        multisample.alphaToOneEnable = VK_FALSE;
    
        // DepthStencil tests disabled
        VkPipelineDepthStencilStateCreateInfo depthStencil = {};
        depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
        depthStencil.pNext = nullptr;
        depthStencil.flags = 0;
        depthStencil.depthTestEnable = VK_FALSE;
        depthStencil.depthWriteEnable = VK_FALSE;
        depthStencil.depthBoundsTestEnable = VK_FALSE;
        depthStencil.depthCompareOp = VK_COMPARE_OP_ALWAYS;
        depthStencil.stencilTestEnable = VK_FALSE;
    
        // We write all r, g, b, a values
        VkPipelineColorBlendStateCreateInfo colorBlend = {};
        VkPipelineColorBlendAttachmentState cbstate[1] = {};
        cbstate[0].colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_R_BIT;
        colorBlend.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
        colorBlend.pNext = nullptr;
        colorBlend.flags = 0;
        colorBlend.logicOpEnable = VK_FALSE;
        colorBlend.attachmentCount = 1;
        colorBlend.pAttachments = cbstate;
    
        std::unique_ptr<PipelineLayout> layout = std::make_unique<PipelineLayout>(context.device());
    
        // 1 set
        VkDescriptorSetLayoutCreateInfo setLayout = {};
        setLayout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
        setLayout.pNext = nullptr;
        setLayout.flags = 0;
        setLayout.bindingCount = 1;
    
        // 1 binding for uniform buffer
        VkDescriptorSetLayoutBinding descriptorBinding = {};
        descriptorBinding.binding = 0;
        descriptorBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
        descriptorBinding.descriptorCount = 1;
        descriptorBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
        descriptorBinding.pImmutableSamplers = nullptr;
        setLayout.pBindings = &descriptorBinding;
    
        // Pool for one and only one set
        VkDescriptorPoolCreateInfo descriptorPoolInfo;
        descriptorPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
        descriptorPoolInfo.flags = 0;
        descriptorPoolInfo.pNext = nullptr;
        descriptorPoolInfo.maxSets = 1;
        descriptorPoolInfo.poolSizeCount = 1;
        VkDescriptorPoolSize poolSize;
        poolSize.descriptorCount = 1;
        poolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
        descriptorPoolInfo.pPoolSizes = &poolSize;
    
        layout->setDescriptorSetLayouts({setLayout});
        layout->setDescriptorPoolCreateInfo(descriptorPoolInfo);
    
        layout->create();
    
        std::unique_ptr<Pipeline> pipeline;
    
        pipeline = std::make_unique<Pipeline>(context.device(), renderpass, subpass);
        pipeline->setVertexInputState(vertexInput);
        pipeline->setStages(std::move(stages));
        pipeline->setViewportState(std::make_unique<VkPipelineViewportStateCreateInfo>(viewPort));
        pipeline->setMultiSampleState(std::make_unique<VkPipelineMultisampleStateCreateInfo>(multisample));
        pipeline->setDepthStencilState(std::make_unique<VkPipelineDepthStencilStateCreateInfo>(depthStencil));
        pipeline->setColorBlendState(std::make_unique<VkPipelineColorBlendStateCreateInfo>(colorBlend));
        pipeline->setLayout(std::move(layout));
    
        pipeline->create();
    
        // Create an uniform buffer
        std::unique_ptr<Buffer> bufUniform = std::make_unique<Buffer>
                (context.device(), context.memoryPool(),VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
                 4 * sizeof(float));
    
        VkDescriptorBufferInfo infoBuffer;
        infoBuffer.buffer = *bufUniform;
        infoBuffer.offset = 0;
        infoBuffer.range = VK_WHOLE_SIZE;
    
        pipeline->addBuffer(std::move(bufUniform));
    
        // "Give" the buffer to the set.
        pipeline->updateBufferDescriptorSets(0, 0,
                                             VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
                                             infoBuffer);
    
        return pipeline;
    }

    Pipelines and descriptor sets give you an unmatched flexibility.

    The main.cpp is this one

    #include "Engine/context.hpp"
    #include "System/exception.hpp"
    #include "cstring"
    #include "System/Vulkan/Pipeline/commandpool.hpp"
    #include "System/Vulkan/Pipeline/builder/gbufferpipelinebuilder.hpp"
    #include "System/Vulkan/Synchronisation/fence.hpp"
    #include "System/Vulkan/Memory/buffer.hpp"
    
    void init(Context &context, CommandPool &commandPool, std::unique_ptr<Pipeline> &pipeline, Buffer &buf) {
        GBufferPipelineBuilder builder;
        // Build the pipeline
        pipeline = builder.build(context, context.surfaceWindow().renderPass(), 0);
        commandPool.reset();
    
        VkClearValue value;
        value.color.float32[0] = 0.;
        value.color.float32[1] = 0.;
        value.color.float32[2] = 0.;
        value.color.float32[3] = 1.;
    
        std::vector<VkMemoryBarrier> memoryBarrier;
        std::vector<VkBufferMemoryBarrier> bufferBarrier;
        std::vector<VkImageMemoryBarrier> imageBarrier(1);
    
        VkImageSubresourceRange range;
    
        range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
        range.baseArrayLayer = 0;
        range.baseMipLevel = 0;
        range.layerCount = 1;
        range.levelCount = 1;
    
        // obvious value for imageBarrier
        imageBarrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
        imageBarrier[0].pNext = nullptr;
        imageBarrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
        imageBarrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
        imageBarrier[0].subresourceRange = range;
    
        float color[] = {1.0, 0.0, 1.0, 1.0};
        memcpy(pipeline->buffer(0).map<float>(), color, sizeof color);
    
        for(int i = 0; i < 4; ++i) {
            commandPool.allocateCommandBuffer();
            commandPool.beginCommandBuffer(i);
    
            imageBarrier[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
            imageBarrier[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
            imageBarrier[0].oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
            imageBarrier[0].newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
            imageBarrier[0].image = context.surfaceWindow().image(i);
            commandPool.commandBarrier(i,
                                       VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
                                       VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
                                       VK_FALSE, memoryBarrier, bufferBarrier, imageBarrier);
    
            commandPool.beginRenderPass(i, context.surfaceWindow().frameBuffer(i), context.surfaceWindow().renderPass(), {value});
    
            VkBuffer bufs[] = {buf};
            VkDeviceSize sizes[] = {0};
    
            pipeline->bind(*commandPool.commandBuffer(i));
            vkCmdBindVertexBuffers(*commandPool.commandBuffer(i), 0, 1, bufs, sizes);
            pipeline->bindDescriptorSets(*commandPool.commandBuffer(i));
            vkCmdDraw(*commandPool.commandBuffer(i), 3, 1, 0, 0);
    
            commandPool.endRenderPass(i);
    
            imageBarrier[0].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
            imageBarrier[0].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
            imageBarrier[0].oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
            imageBarrier[0].newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
            imageBarrier[0].image = context.surfaceWindow().image(i);
    
            commandPool.commandBarrier(i,
                                       VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
                                       VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
                                       VK_FALSE, memoryBarrier, bufferBarrier, imageBarrier);
    
            commandPool.endCommandBuffer(i);
        }
    }
    
    void mainLoop(Context &context) {
        Fence fence(context.device(), 1);
        CommandPool commandPool(context.device(), 0);
        std::unique_ptr<Pipeline> pipeline;
    
        // Un triangle
        float vertices[] = {-0.5, -0.5, 1, 1,
                            0.5, -0.5, 1, 1,
                            0.0, 0.5, 1, 1};
    
        // Triangle to buffer
        Buffer buf(context.device(), context.memoryPool(), VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, sizeof(vertices));
        memcpy(buf.map<float>(), vertices, sizeof(vertices));
    
        while(context.surfaceWindow().isRunning()) {
            context.surfaceWindow().updateEvent();
            if(context.surfaceWindow().neetToInit()) {
                init(context, commandPool, pipeline, buf);
                std::cout << "Initialisation" << std::endl;
                context.surfaceWindow().initDone();
            }
            context.surfaceWindow().begin();
            fence.reset(0);
    
            context.queue().submit(commandPool.commandBuffer(context.surfaceWindow().currentSwapImage()), 1, *fence.fence(0));
            fence.wait();
            context.surfaceWindow().end(context.queue());
        }
    }
    
    int main()
    {
        Context c(true);
    
        mainLoop(c);
    
        glfwTerminate();
    
        return 0;
    }

    And now, we have our perfect triangle !!!!

    Triangle using pipelines, shaders
    Triangle using pipelines

    Barrier and explanations for the main

    I am going to explain quickly what memory barriers are.
    The idea behind the memory barrier is ensured writes are performed.
    When you performed one compute or one render, it is your duty to ensure that data will be visible when you want to re-use them.

    In our main.cpp example, I draw a triangle into a frame buffer and present it.

    The first barrier is :

            imageBarrier[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
            imageBarrier[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
            imageBarrier[0].oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
            imageBarrier[0].newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
            imageBarrier[0].image = context.surfaceWindow().image(i);
            commandPool.commandBarrier(i,
                                       VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
                                       VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
                                       VK_FALSE, memoryBarrier, bufferBarrier, imageBarrier);

    Image barriers are compound with access, layout, and pipeline barrier with stage.
    Since the presentation is a read of a framebuffer, srcAccessMask is VK_ACCESS_MEMORY_READ_BIT.
    Now, we want to render inside this image via a framebuffer, so dstAccessMask is VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

    We were presented the image, and now we want to render inside it, so, layouts are obvious.
    When we submit image memory barrier to the command buffer, we have to tell it which stages are affected. Here, we wait for all commands and we begin for the first stage of the pipeline.

    The second image memory barrier is

    imageBarrier[0].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
            imageBarrier[0].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
            imageBarrier[0].oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
            imageBarrier[0].newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
            imageBarrier[0].image = context.surfaceWindow().image(i);
    
            commandPool.commandBarrier(i,
                                       VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
                                       VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
                                       VK_FALSE, memoryBarrier, bufferBarrier, imageBarrier);

    The only difference is the order and stageMasks. Here we wait for the color attachement (and not the Fragment one !!!!) and we begin with the end of the stages (It is not really easy to explain… but it does not sound not logic).

    Steps to render something using pipelines are:

    1. Create pipelines
    2. Create command pools, command buffer and begin them
    3. Create vertex / index buffers
    4. Bind pipelines to their subpass, bind buffers and descriptor sets
    5. VkCmdDraw

    References

    Specification

    It was a long article, I hope it was not unclear and that I didn’t do to much mistakes ^^.

    Kiss !!!!

  • How to make a Photon Mapper : Photons everywhere

    Bleed Color and Caustics.
    Bleed Color and Caustics.

    Hello,

    It has been a long time since I posted anything on this blog, I am so sorry about it.
    I will try to diversify my blog, I’ll talk about C++, Rendering (always <3), and Qt, a framework I love.

    So, in this last part, we will talk about photons.

    What exactly are Photons ?

    A photon is a quantum of light. It carries the light straightforwardly on the medium. Thanks to it, we can see objects etc.

    How could we transform photons in a “visible value” like RGB color ?

    We saw that the eyes only “see” the radiance !
    So we have to transform our photons in radiance.

    From physic of photons

    We know that one photon have for energy :

    \displaystyle{}E_{\lambda}={h\nu}=\frac{hc}{\lambda}

    where \lambda is the wavelength in nm and E in Joules.
    Say we have n_\lambda photons of E_{\lambda} each.
    We can lay the luminous energy right now :

    \displaystyle{Q_{\lambda}=n_{\lambda}E{\lambda}}

    The luminous flux is just the temporal derivative about the luminous energy :

    \displaystyle{\phi_{\lambda}=\frac{dQ_{\lambda}}{dt}}

    The idea is great, but we have a luminous flux function of the wavelength, but the radiance is waiting for a general luminous flux
    So, we want to have a general flux which is the integral over all wavelengths in the visible spectrum of the \lambda luminous flux.

    \displaystyle{\phi=\int_{380}^{750}d\phi_{\lambda}=\int_{380}^{750}\frac{\partial \phi_{\lambda}}{\partial\lambda}d\lambda}

    Now, we have the radiance

    \displaystyle{L=\frac{d^2 \phi}{cos \theta dAd\omega}=\frac{d^2(\int_{380}^{750}\frac{\partial \phi_{\lambda}}{\partial \lambda}d\lambda)}{cos(\theta)dAd\omega}=\int_{380}^{750}\frac{d^3\phi_{\lambda}}{cos(\theta)dAd\omega d\lambda}d\lambda}

    Using the rendering equation, we get two forms :

    \displaystyle{L^O=\int_{380}^{750}\int_{\Omega^+}fr(\mathbf{x}, \omega_i,\omega_o,\lambda)\frac{d^3\phi_{\lambda}}{dAd\lambda}d\lambda}
    \displaystyle{\int_{\Omega^+}fr(\mathbf{x}, \omega_i,\omega_o)\frac{d^2\phi}{dA}}

    The first one take care about dispersion since the second doesn’t.
    In this post, I am not going to use the first one, but I could write an article about it latter.

    Let’s make our Photon Mapper

    What do we need ?

    We need a Light which emits photons, so we could add a function “emitPhotons” .

    /**
     * @brief      Interface for a light
     */
    class AbstractLight {
    public:
        AbstractLight(glm::vec3 const &flux);
    
        virtual glm::vec3 getIrradiance(glm::vec3 const &position, glm::vec3 const &normal) = 0;
    
        virtual void emitPhotons(std::size_t number) = 0;
    
        virtual ~AbstractLight() = default;
    
    protected:
        glm::vec3 mTotalFlux;
    };

    We also need a material which bounces photons :

    class AbstractMaterial {
    public:
        AbstractMaterial(float albedo);
        
        virtual glm::vec3 getReflectedRadiance(Ray const &ray, AbstractShape const &shape) = 0;
        
        virtual void bouncePhoton(Photon const &photon, AbstractShape const &shape) = 0;
        virtual ~AbstractMaterial() = default;
        
        float albedo;
    protected:
        virtual float brdf(glm::vec3 const &ingoing, glm::vec3 const &outgoing, glm::vec3 const &normal) = 0;
    };

    Obviously, we also need a structure for our photons. This structure should be able to store photons and compute irradiance at a given position.

    class AbstractPhotonMap {
    public:
        AbstractPhotonMap() = default;
    
        virtual glm::vec3 gatherIrradiance(glm::vec3 position, glm::vec3 normal, float radius) = 0;
        virtual void addPhoton(Photon const &photon) = 0;
        virtual void clear() = 0;
    
        virtual ~AbstractPhotonMap() = default;
    private:
    };

    How could we do this ?

    Photon emitting is really easy :

    void SpotLight::emitPhotons(std::size_t number) {
        Photon photon;
    
        photon.flux = mTotalFlux / (float)number;
        photon.position = mPosition;
    
        for(auto i(0u); i < number; ++i) {
            vec3 directionPhoton;
            do
                directionPhoton = Random::random.getSphereDirection();
            while(dot(directionPhoton, mDirection) < mCosCutoff);
    
            photon.direction = directionPhoton;
            tracePhoton(photon);
        }
    }

    We divide the total flux by the number of photons and we compute a random direction, then we could trace the photon

    Bouncing a photon depends on your material :

    void UniformLambertianMaterial::bouncePhoton(const Photon &_photon, const AbstractShape &shape) {
        Photon photon = _photon;
    
        float xi = Random::random.xi();
        float d = brdf(vec3(), vec3(), vec3());
    
        if(photon.recursionDeep > 0) {
            // Photon is absorbed
            if(xi > d) {
                World::world.addPhoton(_photon);
                return;
            }
        }
    
        if(++photon.recursionDeep > MAX_BOUNCES)
            return;
    
        photon.flux *= color;
        photon.direction = Random::random.getHemisphereDirection(shape.getNormal(photon.position));
        tracePhoton(photon);
    }

    To take care about conservation of energy, we play Russian roulette.
    Obviously, to take care about conservation of energy, we have to modify the direct lighting as well ^^.

    vec3 UniformLambertianMaterial::getReflectedRadiance(Ray const &ray, AbstractShape const &shape) {
        vec3 directLighting = getIrradianceFromDirectLighting(ray.origin, shape.getNormal(ray.origin));
        float f = brdf(vec3(), vec3(), vec3());
    
        return color * (1.f - f) * f * (directLighting + World::world.gatherIrradiance(ray.origin, shape.getNormal(ray.origin), 0.5f));
    }

    Finally, we need to compute the irradiance at a given position :
    It is only :

    \displaystyle{E=\sum \frac {\phi}{\pi r^2}}

    So we could easily write :

    vec3 SimplePhotonMap::gatherIrradiance(glm::vec3 position, glm::vec3 normal, float radius) {
        float radiusSquare = radius * radius;
        vec3 irradiance;
        for(auto &photon : mPhotons)
            if(dot(photon.position - position, photon.position - position) < radiusSquare)
                if(dot(photon.direction, normal) < 0.0)
                    irradiance += photon.flux;
    
        return irradiance / ((float)M_PI * radiusSquare);
    }

    To have shadows, you could emit shadow photons like this :

    void traceShadowPhoton(const Photon &_photon) {
        Photon photon = _photon;
        Ray ray(photon.position + photon.direction * RAY_EPSILON, photon.direction);
    
        photon.flux = -photon.flux;
    
        auto nearest = World::world.findNearest(ray);
    
        while(get<0>(nearest) != nullptr) {
            ray.origin += ray.direction * get<1>(nearest);
            photon.position = ray.origin;
    
            if(dot(ray.direction, get<0>(nearest)->getNormal(ray.origin)) < 0.f)
                World::world.addPhoton(photon);
    
            ray.origin += RAY_EPSILON * ray.direction;
    
            nearest = World::world.findNearest(ray);
        }
    }

    That’s all ! If you have any question, please, let me know !

  • How to make a Photon Mapper : Whitted Ray Tracer

    Hello there,

    Today, we are going to see how to make the first part of our photon mapper. We are unfortunately not going to talk about photons, but only about normal ray tracing.

    Whitted Ray Tracer without shadows
    Whitted Ray Tracer without shadows

    This is ugly !!! There is no shadow…

    It is utterly wanted, shadows will be draw by photon mapping with opposite flux. We will see that in the next article.

    Introduction

    In this chapter, we are going to see one implementation for a whitted ray tracer

    Direct Lighting

    Direct lighting equation could be exprimed by :

    \displaystyle{L_o(\mathbf{x}, \vec{\omega_o}) = \sum_{i\in \{Lights\}}f_r(\mathbf{x}, \vec{\omega_i}, \vec{\omega_o})\frac{\phi_{Light}}{\Omega r^2}cos(\theta)}

    The main difficult is to compute the solid angle \Omega .
    For a simple isotropic spot light, the solid angle could be compute as :

    \displaystyle{\Omega=\int_{0}^{angleCutOff}\int_{0}^{2\pi}sin(\theta)d\theta d\phi =-2\pi(cos(angleCutOff)-1)}

    with :

    1. \Omega the solid angle.
    2. \phi_{Light} the total flux carried by the light.
    3. cos(\theta) the attenuation get by projected light area on lighted surface area.
    4. angleCutOff \in [0; pi].

    Refraction and reflection

    Both are drawn by normal ray tracing.

    Architecture

    Now, we are going to see how our ray tracer works :

    Shapes :

    Shapes are bases of renderer. Without any shapes, you can’t have any render. We can have many differents shape, so, we can use one object approach for our shapes.

    
    #ifndef SHAPE_HPP
    #define SHAPE_HPP
    
    #include "ray.hpp"
    #include "material.hpp"
    
    /**
     * @brief      This class provides an interface to manage differents shape
     */
    class AbstractShape {
    public:
        AbstractShape() = default;
        AbstractShape(std::unique_ptr &&material);
    
        /**
         * @brief      Return the distance between shape and ray emetter   
         *
         * @param      ray     
         *
         * @return     Negative value if not found. Distance between object and ray emetter
         */
        virtual float intersect(Ray const &ray) const = 0;
        virtual glm::vec3 getNormal(glm::vec3 const &position) const = 0;
    
        /**
         * @brief      Return the radiance returned by the material owned 
         *
         * @param      ray  
         *
         * @return     radiance
         */
        glm::vec3 getReflectedRadiance(Ray const &ray);
    
        virtual ~AbstractShape() = default;
    
    private:
        std::unique_ptr mMaterial = std::make_unique(glm::vec3(1.0, 1.0, 1.0), 1.0);
    };
    

    Materials

    For each shapes, we obviously have a particular material. The material have to give us a brdf and can reflect radiance.

    
    /**
     * @brief      This class describes a material
     */
    class AbstractMaterial {
    public:
        AbstractMaterial(float albedo);
    
        /**
         * @brief      Get the reflected radiance
         *
         * @param      ray    
         * @param      shape  Useful to get normal, UV for texture???
         *
         * @return     { description_of_the_return_value }
         */
        virtual glm::vec3 getReflectedRadiance(Ray const &ray, AbstractShape const &shape) = 0;
    
        virtual void bouncePhoton(Photon const &photon, AbstractShape const &shape) = 0;
    
        virtual ~AbstractMaterial() = default;
    
        float albedo;
    protected:
        /**
         * @brief      Get the Bidirectionnal Reflectance Distribution Function
         *
         * @param      ingoing   
         * @param      outgoing  
         * @param      normal    
         *
         * @return     the brdf
         */
        virtual float brdf(glm::vec3 const &ingoing, glm::vec3 const &outgoing, glm::vec3 const &normal) = 0;
    };
    

    Storage Shapes

    To have a better ray tracing algorithm, we could use a spatial structure like Kd-tree or other like one :

    
    /**
     * @brief      This class provide a structure to store shapes
     */
    class AbstractShapeStorage {
    public:    
        /**
         * @brief      Add a shape in structure
         *
         * @param      shape 
         */
        virtual void addShape(std::shared_ptr const &shape) = 0;
    
        /**
         * @brief      Get the nearest shape
         *
         * @param      ray   
         *
         * @return     a tuple with shape and distance. Shape could be null if no shape found
         */
        virtual std::tuple<std::shared_ptr, float> findNearest(Ray const &ray) = 0;
    
        ~AbstractShapeStorage() = default;
    };
    

    Algorithm

    The main algorithm part is on the materials side. Below, a piece of code where I compute the reflected radiance for a lambertian material and a mirror. You could see that material part has access to other shape via the global variable world.

    
    float LambertianMaterial::brdf(const glm::vec3 &, const glm::vec3 &, glm::vec3 const &) {
         return albedo / M_PI;
    }
    
    vec3 UniformLambertianMaterial::getReflectedRadiance(Ray const &ray, AbstractShape const &shape) {
        vec3 directLighting = getIrradianceFromDirectLighting(ray, shape);
        float f = brdf(vec3(), vec3(), vec3());
    
        return color * f * (directLighting);
    }
    
    float MirrorMaterial::brdf(const vec3&, const vec3&, const vec3&) {
        return albedo;
    }
    
    vec3 MirrorMaterial::getReflectedRadiance(const Ray &ray, const AbstractShape &shape) {
        if(ray.recursionDeep >= MAX_BOUNCES)
            return vec3();
    
        Ray reflectedRay = getReflectedRay(ray, shape.getNormal(ray.origin + ray.direction * ray.distMax));
        auto nearest = World::world.findNearest(reflectedRay);
    
        if(get(nearest) != nullptr) {
            reflectedRay.distMax = get(nearest);
            return brdf(vec3(), vec3(), vec3()) * get(nearest)->getReflectedRadiance(reflectedRay);
        }
    
        return vec3();
    }
    

    Lights

    Lighting is a useful feature in a render. It’s thanks to lights that you can see the relief. A light carry a flux. Irradiance is the flux received by a surface.

    So, our interface is :

    
    /**
     * @brief      Interface for a light
     */
    class AbstractLight {
    public:
        AbstractLight(glm::vec3 const &flux);
    
        /**
         * @brief      Compute irradiance receive by the projected area in position
         *
         * @param      position  surface's position
         * @param      normal    surface's normal
         *
         * @return     irradiance
         */
        virtual glm::vec3 getIrradiance(glm::vec3 const &position, glm::vec3 const &normal) = 0;
    
        virtual void emitPhotons(std::size_t number) = 0;
    
        virtual ~AbstractLight() = default;
    
    protected:
        glm::vec3 mTotalFlux;
    };
    

    Below a piece of code about computing irradiance :

    
    vec3 SpotLight::getIrradiance(const vec3 &position, const vec3 &normal) {
        vec3 posToLight = mPosition - position;
        vec3 posToLightNormalized = normalize(posToLight);
    
        if(dot(-posToLightNormalized, mDirection) > mCosCutoff) {
            float solidAngle = - 2.f * M_PI * (mCosCutoff - 1);
            return lambertCosineLaw(posToLightNormalized, normal) * mTotalFlux /
                (solidAngle * dot(posToLight, posToLight));
        }
    
        return vec3();
    }
    

    The next time, we will see how to integrate a photon mapper to our photon mapper. If you want to have the complete code, you could get it here :
    GitHub

    Bye my friends :).